
GOES Satellite timecode simulator
Or

Using the TrueTime DC468 again

Written by: Paul WB8TSL

Project goal
Recreate the time code signal to allow the TrueTime DC468 GOES receiver to operate
again.

Choices of design
Simplicity of implementation of a complex 1970s system.
Remove the need for complex RF mixing schemes and filters.
For the purist this can be implemented if you have the time.
Low cost with modern parts availability.
Synchronization by GPS using the most common sentence GPRMC sequence
Minimum of actual construction effort and soldering.
Simplified and clearly understandable coding. (At least to me) Its Basic language.

This has been achieved.

One slight difference has been implemented however.
The original DC468 displayed the day of the year in day counts.
This has never been very useful to me so the leading digits now display the day of the
month. Unfortunately I can’t do anything with the leading number like hex month. It will
not allow that though other display digits do support hex. Secondarily I am out of
program space in the SXb micro.

Background

This project actually started when another Time-Nut and I were discussing the Austron
2201a GPS timing receiver and we both realized we also had DC468s. The
documentations available on the net for the various components. But key tid-bits are
missing and had to be reversed out. Over 3-4 weeks I assembled the information, coded,
tested and failed ultimately achieving success.

GOES background
In 1976 the GOES satellite time service was implemented. It was to deliver a time
reference from orbit primarily for various weather platforms to deliver information for
processing on shore.
A majority of the 468 Mhz signals time is spent encoding platform interrogation
messages. The timecode actually is a 4 bit nibble and a complete time sequence takes 30
seconds. So either the 00 or 30 second message is what the DC468 uses to establish time.

1

GPS replaced the GOES timecode service in 2005 leaving approximately 2000 DC468s
dead. These amazingly still show up at ham-fests and flea markets for $5 or so.
They are a very nice looking time display using red Sperry or panalplex 7 segment
displays. In addition these units tend to have various time signals out such as IRIG B or
serial timecode etc. Quite a mix actually.

A point never very clearly called out is the fact that the 100hz clock signal that locks a 10
MHZ local reference in the DC468 would have been very accurate and could have
actually been a frequency transfer method. I don’t really know. But its very tightly locked
and very very picky.

Simplified diagram and discussion

This section discusses the system solution.

Created 12/11/2010
Eng. by: WB8TSL

20 MHz to 100 Hz
divider SXb

20 Mhz Xtal osc

TrueTime
DC468

Goes encoder SXb

GPS receiver
GPRMC

Goes Timecode system
Truetime DC468 rcvr

2

In this diagram a 20 MHz dip oscillator (Must be adjustable) feeds two microprocessors.
The first one divides 20 Mhz very accurately to 100 HZ and creates the encoding clock
used for traditional mancester encoding. Not the more modern version.

The 100 Hz feeds the GOES encoder that takes the 100 Hz clock and GPS time sentences
as inputs for synchronization. The output of the GOES encoder is a 100 Hz mancester
signal that’s injected into the DC468 receiver just past the 4.5 Mhz phase decoder. A
small board on the back panel of the receiver. It has to be at this point because you can
not directly inject it as a data signal to the DC468 micro because its clock signals will not
be synchronized. Tried and failed that approach.

The overall process is to send one long 30 second sequence to the DC468 consisting of
sync nibbles the timecode nibble and then the remaining platform interrogation nibbles.
Lots of them. The whole message must exactly land on either the 00 or 30 second time
mark.

Simplified lock sequence of the DC468

Powerup
Timecode applied
Looks for the hex 05 or A0 sync signal. Colons solid
Looks for satellite orbit position info. Really! Turns on east or west GOES LED.
Then decodes several minutes worth of timecode and then displays the time.
The whole process typically is about 2-4 minutes.

Though I could synchronize the system to GPS every 10 minutes I have found that its
stable over many hours. Depends on the quality of the 20 Mhz oscillator.
As such I tell it to only sync on any hour with a 2 in the hours position. 02, 12, 22.
Arbitrary time chosen

The board that I created is simply point to point wired and 6-7 wires per micro.
I really tried to force the divider into a single chip with the encoder. It simply did not
work reliably and at $ 3.56 each wasn’t worth the effort. Many pins on the 28 pin dip are
simply not used. The wirings pretty simple.

Schematic and description
The following is the complete schematic of the GOES simulator.

3

On the upper left is the 20 Mhz master oscillator. This should be a cmos or TTL out. 1-2
ppm tcxo. I amusing a vectron that I had. It must be tunable over a small range so that the
100 Hz is 100hz. The Dc 468 expects plus or – 1 Hz stability from what I have seen. The
clock recovery pll will not stay locked if a larger variation is presented.
This feeds the first SXb micro processor the 20 Mhz to 100 Hz divider that’s loaded with
program TrueTime 100 hz divider software. I used a HP5370 counter on a RB reference
to set this frequency. Originally in 1976 the uplink must have been very accurate.

100 Hz from this divider micro feeds the second GOES encoder micro. Programmed with
TrueTime_inservice_12102010 software. This micro runs very quick so 99% of its time
is spent checking for rising and falling edges of the 100 Hz reference on Port A.0. Then it
updates various variables and waits again. Output of the micro is Port A.1 it is a software
Manchester encoder. This runs over to the bnc on the back of the DC 468 that’s been
modified as per the drawing in the bottom right of the schematic.
The software has numerous comments and can be read with a text editor or the Parallax
IDE suite free to download.

Lastly a GPS signal that has a GPRMC sequence feeds the encoder. It looks for the
GPRMC sequence and then counts positions and commas to obtain the time and date
information. This can be a rs232 signal and no other conditioning is required. Possibly
better protection with 2 diodes but it works well as is. Its set at 4800 baud N 8 1. Most of

4

the GPS pucks I have run into out of the box seem to have this as a setting. My puck is a
garmin GPS35. Picked up at a Hamfest for $5 or less.

Lastly the diode and cap are the power on reset. This works but can be improved with any
small power reset IC these days. I plan to add one. If you are resetting leave if off for 10
seconds or so. It takes that long. The reset chip would be an improvement.

Assemble in a cardboard box for test
Operation

5

Connecting to the DC468

Connection to the DC468 is through the antenna BNC. This actually has signals and
power on it. The best way to free up the BNC is to pull the 4.5 Mhz board off the back of
the receiver. It’s the small board with 3 crystals connected to the BNC.
To remove lift the 12 pin jumper from the main decoder board. Cut the bnc wire
somewhat hard to get to. Unscrew either 1 or 2 screws to the back panel. It should drop
out in your hands. Keep the board who knows one day maybe someone will build a 4.5
MC phase encoder and filters.

The 12 pin jumper as 5 Volts on pin 1. That is the pin on the right side when looking
from the front of the chassis. A small resistor pack is added to these 12 pins that bias the
decoder circuits and inject the Manchester encoding and also signal a satellites acquired.
See schematic and JI connector on the data board..

6

Actual picture

Final comment.

7

The systems working well and the design is offered up free. No warranties or other
support are implied. No plans for kits or boards and such.

Good luck
Paul
WB8TSL

8

